Hybrid Wind Speed Prediction Based on a Self-Adaptive ARIMAX Model with an Exogenous WRF Simulation
نویسندگان
چکیده
Wind speed forecasting is difficult not only because of the influence of atmospheric dynamics but also for the impossibility of providing an accurate prediction with traditional statistical forecasting models that work by discovering an inner relationship within historical records. This paper develops a self-adaptive (SA) auto-regressive integrated moving average with exogenous variables (ARIMAX) model that is optimized very-short-term by the chaotic particle swarm optimization (CPSO) algorithm, known as the SA-ARIMA-CPSO approach, for wind speed prediction. The ARIMAX model chooses the wind speed result from the Weather Research and Forecasting (WRF) simulation as an exogenous input variable. Further, an SA strategy is applied to the ARIMAX process. When new information is available, the model process can be updated adaptively with parameters optimized by the CPSO algorithm. The proposed SA-ARIMA-CPSO approach enables the forecasting process to update training information and model parameters intelligently and adaptively. As tested using the 15-min wind speed data collected from a wind farm in Northern China, the improved method has the best performance compared with several other models.
منابع مشابه
Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کاملAdaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملپیشگویی گامـ بلند سرعت باد مبتنی بر مدل ترکیبی RNNGA
For proper and efficient utilization of wind power, the prediction of wind speed is very important. Wind is one of the main sources of energy in the world, but the wind turbines have a lack of reliability, continuity and homogeneity in power production. On the other hand, sudden changes of wind speed, lead to risk for wind turbine units health. Therefore, the prediction of wind speed for turbin...
متن کاملSimulation and Prediction of Wind Speeds: A Neural Network for Weibull
Abstract. Wind as a resource of renewable energy has obtained an important share of the energy market already. Therefore simulation and prediction of wind speeds is essential for both, for engineers and energy traders. In this paper we analyze the surface wind speed data from three prototypic locations: coastal region (Rotterdam), undulating forest landscape few 100 m above sea level(Kassel), ...
متن کاملAn Intelligent Hybrid Neural Network Model in Renewable Energy Systems
This paper presents a hybrid neural network approach to predict wind speed automatically in renewable energy systems. Wind energy is one of the renewable energy systems with lowest cost of production of electricity with largest resources available. By the reason of the fluctuation and volatility in wind, the wind speed prediction provides the challenges in the stability of renewable energy syst...
متن کامل